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Abstract. We present LongiNet, a dual-encoder 3D network for longi-
tudinal lesion segmentation. The baseline encoder takes the baseline CT
image together with its baseline mask, while the follow-up encoder takes
only the follow-up CT image. Encoders share weights from a pretrained
nnU-Net (ULS23 baseline) and features are fused via 1x1x1 convolutions
before decoding. A mandatory auxiliary baseline-mask reconstruction
task is used during training to improve stability. Data are standardized
by CT intensity clamping to [-1000, 400] and rescaling to [0,1], with
lightweight spatial and intensity augmentations. Training uses Dice+CE
loss, SGD with PolyLR and short transfer warmup. Validation uses a
deterministic split. No test-time augmentation or ensembling is applied.

Keywords: autoPET challenge · longitudinal segmentation · nnU-Net
· MONAI

1 Introduction

We address longitudinal lesion segmentation in CT where baseline and follow-
up scans with lesion clickpoints are provided. Our method fuses baseline and
follow-up representations to predict follow-up lesions concisely and robustly.

2 Methods

We follow the template and provide concise details; Table 1 summarizes key
settings.

2.1 Data

Training data Longitudinal-CT dataset [2].

Validation data Deterministic split (val_split=0.2) created once and stored
(index- and ID-based) for reproducible validation.
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2.2 Data pre-processing

CT intensities clamped to [-1000, 400] and rescaled to [0,1]. Channels ensured
first; masks binarized. Inputs are formed as follows: the baseline encoder receives
two channels [baseline image, baseline mask], and the follow-up encoder receives
one channel [follow-up image].

2.3 Algorithm/model

Dual-encoder 3D nnU-Net backbone (ULS) with shared weights for BL and FU
streams [1]. Features are fused via 1x1x1 convolutions at all skip levels and
bottleneck; decoded by nnU-Net decoder. A mandatory auxiliary baseline mask
reconstruction branch is used during training to improve stability.

2.4 Data post-processing

Predictions are resampled into full-volume geometry with nearest-neighbor, then
component-wise labeled using nearest clickpoint in physical space; final mask is
binary.

2.5 Training and test parameters

Loss: Dice+CE (softmax, one-hot). Optimizer: SGD (momentum=0.99, nes-
terov), weight_decay=3e-5. LR: initial_lr=2.5e-3 with PolyLR (exp=0.9), max_epochs=1000;
transfer warmup 3 epochs at 0.1×LR. Batch size=8, mixed precision (fp16), 4
GPUs (DDP). Augmentations: small affine rotations ( ±10◦), Gaussian noise
(std=0.02), intensity scale (±20%), shift (±10%), contrast (gamma 0.8–1.2),
Gaussian smooth (σ = 0.5 . . . 1.0). Test: no TTA, threshold 0.5; no ensembling.

2.6 Github repository

Link to Github repository: https://github.com/DIAGNijmegen/oncology-longinet-
container

3 Results

We used an 80/20 train/validation split (single run; no cross-validation). Figure 1
and Figure 2 summarize validation performance.
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Fig. 1. Validation Dice over training.
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Fig. 2. Validation loss over training.

4 Discussion

During training, we observe improved performance compared to fine-tuning the
pure ULS baseline. The dual-encoder fusion together with the auxiliary recon-
struction task appears beneficial, but more experiments are required for conclu-
sive results.

5 Conclusion

LongiNet delivers a concise, reproducible longitudinal segmentation pipeline suit-
able for challenge submission without TTA or ensembling.
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Table 1. Algorithm details

Team name algorithm
name (as
submitted on
grand-challenge)

data
pre-processing

data post-
processing

training data
augmentation

niels rocholl LongiNet
dual-encoder

CT clamp
[-1000,400],
rescale [0,1]

Resample to full,
comp. labeling
by nearest
clickpoint

Small affine,
noise, scale,
shift, contrast,
Gaussian smooth

test time
augmentation

ensembling standardized
framework?

network
architecture

loss

None None MONAI +
nnU-Net v2 +
Lightning

Dual-encoder
UNet (3D)

Dice + CE

training data data/model
dimensionality
and size

use of
pre-trained
models

GPU
hardware for
training

Longitudinal-CT
dataset [2]

3D: 128x128x64
inputs (VOIs
64x128x128 at
inference)

Pretrained
nnU-Net (ULS23
baseline) [1]

1x Nvidia A100


