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Abstract. The AutoPET IV competition gathered the medical imaging
community to explore semi-automated segmentation of Positron Emit-
ting Tomography (PET) scans. As last year, the proposed models should
be able to perform lesion segmentation on a PET/CT scan, without
knowing which radioactive tracer was used, which can either be FDG or
PSMA. In this paper we describe how we used the nnUNetv2[3] and
TotalSegmentator[6] tools to improve performance of semi automatic
PET/CT lesion segmentation.

Keywords: autoPET challenge · PET · CT · Segmentation · Deep
Learning

1 Introduction

When combined with Computed Tomography (CT), Positron Emission Tomog-
raphy (PET) proves highly valuable, as it enables both the detection and mon-
itoring of cancer by providing detailed metabolic and anatomical information.
Currently, nuclear medicine physicians use only a subset of tumor lesions to eval-
uate tumor dynamics, from which they extract only one-dimensional information
about the diameter. Precise lesion segmentation could allow for the extraction
of a larger proportion of the tumor’s morphological data. This could enable bet-
ter assessment of cancer staging and more personalized treatment in the future.
The problem is that manual segmentation is a time-consuming task, especially
in cases of metastatic cancer. The solution lies in developing automatic lesion
segmentation tools.

Automated segmentation continues to face considerable challenges, notably
the variation in physiological uptake between different PET tracers, such as
FDG and PSMA, hindering the development of a tracer-agnostic segmentation
model. Furthermore, models often struggle to distinguish between physiological
and tumoral uptake. One approach to address this issue is to include a human
expert in the segmentation loop. The expert’s role is to provide simple clicks to
indicate whether a given pixel corresponds to a lesion or merely reflects physio-
logical uptake. This method helps improve the model’s performance by reducing
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false positives and missed segmentations. Moreover, the clicks required from the
expert are quick and minimally time-consuming.

The autoPET challenge was created to provide researchers with a platform to
directly tackle these issues. Now in its fourth edition, the challenge continues to
evolve and address increasingly complex scenarios. The objective of the previous
edition (autoPET III) was to develop algorithms capable of segmenting lesions
in PET/CT scans acquired using either FDG or PSMA tracers, without prior
knowledge of which tracer had been used. This year, the challenge introduces an
interactive human-in-the-loop segmentation scenario, adding a new dimension
to the task. Similar to the previous edition, the setting remains multi-tracer
and multi-center, further reflecting the variability and complexity encountered
in real-world clinical imaging.

This manuscript presents our proposed solution submitted to the autoPET
IV challenge for the first task: single-staging whole-body PET/CT lesion seg-
mentation.

2 Methods

2.1 Data

Images The dataset consists of PET/CT images acquired using two distinct
tracers: FDG and PSMA. The FDG cohort comprises 1,014 studies, including
501 patients with cancer and 513 healthy individuals. The PSMA cohort con-
tains scans from 597 patients diagnosed with prostate cancer. All imaging data
were collected from two clinical centers: University Hospital Tübingen, Germany
(UKT), and LMU Hospital, LMU Munich, Germany (LMU). Three different
PET/CT scanners were used for image acquisition: Siemens Biograph 64-4R
TruePoint, Siemens Biograph mCT Flow 20, and GE Discovery 690. In addition
to the imaging data, lesion segmentations were provided. These annotations were
performed by different radiologists, depending on the originating medical center.

Clicks Furthermore, expert clicks-represented as sets of 3D coordinates-are in-
cluded for each image. Each click is labeled as either background or tumor,
indicating the corresponding region type. These clicks serve as a form of weak
supervision to guide the network toward relevant anatomical or pathological
areas for training and later during inference.

2.2 Algorithm/model

Heatmaps Heatmaps are generated based on the input clicks following the
procedure below. Tumor clicks and background clicks are processed differently.
For tumor clicks, a zero-filled array named heatmaptumor is first created with the
same dimensions as the PET image. For each tumour click, we create a zero-filled
local array of the same size, then the voxel at the corresponding coordinates is
set to 1 in the local array. A Gaussian filter is then applied to this local array,
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which is subsequently added to heatmaptumor. Next, all voxels with an SUV
value lower than the minimum between the SUV at the click location and 3 are
set to zero. Finally, the values in heatmaptumor are clipped to the range [0, 1].

For background clicks, a zero-filled array named heatmapbackground is created
with the same dimensions as the PET image. For each background click, the
voxel at the corresponding coordinates is set to 1. Once all clicks are processed
we apply a gaussian filter on the whole array. Then all voxels with a value greater
than zero in the heatmaptumor array are set to zero in heatmapbackground. The
final heatmap is computed as heatmaptumor − heatmapbackground.

In the final heatmap, voxels with a positive value represent parts of the
volume influenced by a positive click, likely to be part of a lesion. In the opposite,
voxels with negative values represent parts of the volume influenced by a negative
click. The network should learn to avoid classifying voxels in this area as part of
a lesion.

Fig. 1. Heatmaps construction algorithm

Tracer Discriminator Building on last year’s work, we also used a MIP-CNN
network to automatically determine which tracer was used for the PET/CT
scan. The output of this model defines the segmentation model which will be
used to process the scan. This model is, as described in [4], a convolutional
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neural network which processes a 2D Maximum Intensity Projection (MIP) of
the PET volume. Depending on the output of this discriminator network, we run
the inference using either the PSMA or the FDG model. Both of these models
run as a 5-folds ensemble in classic nnUNet fashion. The number of allowed
mirroring axes is determined dynamically based on the processed volume’s size
(see below).

Segmentation Models We used the nnUNet[3] framework to train two Resid-
ualEncoderUNet models, more precisely using the L sized architecture. The
patch size was set to [192, 192, 192], with remaining experiment parameters un-
changed. The FDG model was trained for 350 iterations per epoch, the PSMA
model was trained for 250 iterations per epoch. Each model was trained for 1500
epochs. The trainers we used are modified versions of the ones proposed in [5],
with the same data augmentation methods (including the misalignment data
augmentation).

Last year’s winning solution relied on pretraining the model on a large med-
ical imaging dataset. The weights of the pretrained model were made publicly
available by the team after last year’s competition. We used these weights as the
initial weights to train our models.

Additional Organs Supervision Using organs as additional labels has been
shown to increase the performance and in particular reducing the amount of false
positives. We selected organs which exhibit tracer uptake without malignancy,
namely the heart, brain, aorta, liver, spleen, prostate, parotid and submandibular
glands as well as parts of the digestive system. We add the kidneys and bladder
since they often contain high SUV values since they eliminate the tracer. Finally
we include the lungs and skeleton as we hypothesize that including anatomical
landmarks in the supervision makes it easier for the network to learn a coherent
representation of human anatomy. All these organs were contoured using the
TotalSegmentator[6] tool.

We used a double headed model, with one segmentation head for lesions
only and one for the organs segmentation. We train the model on both tasks
simultaneously. At inference time, the organs segmentation head is disabled so
we retrieve only a binary segmentation map: the lesions contours.

Post-Processing During the AutoPETII competition, Alloula et al.[2] showed
that the trained segmentation models tend to output more small components in
their segmentation than are initially present in the dataset. To deal with this
inconsistency, they removed single connected components smaller than a fixed
number of voxels. Through experiments they found the optimal threshold to be
around 10 voxels. We adapted this small components removal method to PET
scans by removing single connected components both smaller than 10 voxels
and having a maximum SUV value lower than 4. This aims to further reduce
the number of false positives.
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Fig. 2. Organs contours for a sample case
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Dynamic Inference Depth Inference must run in less than 15 minutes per
case. Depending on the dimensions of the input image, our algorithm takes
a different amount of time to run, mainly due to the fact that the number
of forward passes needed depends on the number of patches needed to cover
the volumes. Instead of playing it safe for all patients by removing mirroring
altogether, we developed a dynamic algorithm which maximizes the number of
allowed axes while respecting the time limit. For this algorithm, we looked for
the optimal voxels number thresholds for the number of allowed mirroring axes,
considering that each axis we remove roughly means a 2x speedup. We ran the
inference algorithm with no mirroring for values for all dimensions ranging from
100 to 1000 voxels and measured the runtime for each combination. Considering
the difference in performance between our GPU (Quadro P6000) and the one
proposed by grand-challenge (Tesla T4), we chose to set the threshold for 1
mirroring axis at 90 millions voxels, 2 mirroring axes at 39M voxels and all 3
axes at 18M voxels.

2.3 Training and test parameters

See details in 1.

2.4 Github repository

Link to Github repository: https://github.com/Zhack47/autopetiv

3 Results

Using this method, we reached first place in the preliminary test set. More im-
portantly, our method showed strong performance over all the used metrics: Dice
Score, False Positive Volume and False Negative Volume.

4 Discussion

We designed a strong, robust automated PET/CT segmentation method which
works in a human-in-the-loop scenario with input clicks. One limitation for our
method is that,for post-processing we use a number of voxels instead of a real
volume (e.g.: 200 cubic millimeters) as threshold.

5 Conclusion

Disclosure of Interests. All PhD fundings are partly from Siemens Healthineers.
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Table 1. Algorithm details

Team name algorithm
name (as
submitted on
grand-challenge)

data
pre-processing

data post-
processing

training data
augmentation

AIMS-QuantIF AutoPETIV_CHBNormalization,
PET-Aware
Heatmaps

Small Low SUV
Components
Removal

All nnUNet
augmentations +
Misalign

test time
augmentation

ensembling
(e.g.
cross-validation,
model ensemble,
...)

standardized
framework?
(e.g. nnUNet,
MONAI, ...)

network
architecture
(e.g. UNet (3D))

loss

Time-Adaptive
Mirroring

5-folds
ensembling

nnUNetv2
(3d_fullres)

Residual
Encoder UNet L

DSC + CE

training data data/model
dimensionality
and size (e.g.
2D: 128x128, 3D:
128x192x160, ...)

use of
pre-trained
models (public
available or own
developed)

GPU
hardware for
training

1014 FDG + 597
PSMA PET-CT
of autoPET

3D: 192x192x192 MultiTalent
Medical Imaging
Model [1]

2x Nvidia H100
96GB + 2x
Nvidia Tesla
V100 32GB
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