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Abstract. Whole-body PET/CT is a cornerstone of oncological imag-
ing, yet accurate lesion segmentation remains challenging due to tracer
heterogeneity, physiological uptake, and multi-center variability. While
fully automated methods have advanced substantially, clinical practice
benefits from approaches that keep humans in the loop to efficiently re-
fine predicted masks. The autoPET/CT IV challenge addresses this need
by introducing interactive segmentation tasks based on simulated user
prompts. In this work, we present our submission to Task 1. Building
on the winning autoPET III nnU-Net pipeline, we extend the framework
with promptable capabilities by encoding user-provided foreground and
background clicks as additional input channels. We systematically in-
vestigate representations for spatial prompts and demonstrate that Eu-
clidean Distance Transform (EDT) encodings consistently outperform
Gaussian kernels. Furthermore, we propose online simulation of user in-
teractions and a custom point sampling strategy to improve robustness
under realistic prompting conditions. Our ensemble of EDT-based mod-
els, trained with and without external data, achieves the strongest cross-
validation performance, reducing both false positives and false negatives
compared to baseline models. These results highlight the potential of
promptable models to enable efficient, user-guided segmentation work-
flows in multi-tracer, multi-center PET/CT. Code is publicly available
at https://github.com/MIC-DKFZ/autoPET-interactive.

Keywords: autoPET IV challenge - interactive segmentation - prompt-
able models.

1 Introduction

Positron Emission Tomography combined with Computed Tomography (PET/CT)
is an essential modality in oncological imaging, providing both metabolic and
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anatomical information for tumor detection, staging, and therapy monitoring.
Accurate lesion segmentation is central to these tasks but remains highly time-
consuming and prone to inter-observer variability when performed manually.
Automated segmentation offers substantial potential to accelerate radiological
workflows and enable comprehensive quantification. However, its effectiveness
is limited by physiological variability, tracer-dependent uptake patterns, and
heterogeneity across imaging centers. These factors complicate the distinction
between physiological and malignant uptake, particularly in a multi-tracer set-
ting.

To advance robust automated methods, the autoPET challenge series has pro-
gressively expanded its scope. The autoPET III challenge introduced large-scale
multi-tracer, multi-center datasets, combining 1014 FDG PET/CT scans [4] with
597 PSMA tracer scans [8], and established the current benchmark for fully au-
tomated lesion segmentation. The follow-up autoPET/CT IV challenge shifts
the focus toward interactive, human-in-the-loop segmentation. In Task 1, al-
gorithms are evaluated under increasing levels of simulated user input in the
form of foreground and background clicks, ranging from fully automated pre-
dictions to guidance with up to 10 lesion and 10 background clicks per scan.
This setup enables a systematic investigation of how interactive conditioning
improves segmentation quality in whole-body PET/CT, while avoiding the need
for exhaustive manual annotation of every lesion.

This focus reflects a broader paradigm shift in computer vision and medical
image analysis toward promptable models. Initiated by the Segment Anything
Model (SAM) [9], interactive prompting has rapidly been adapted for medical
imaging tasks [6], including lesion segmentation [10], where sparse user inputs
provide informed cues to resolve ambiguities in complex anatomical contexts.
AutoPET/CT 1V provides an pportunity to benchmark such approaches in the
setting of multi-tracer, multi-center PET /CT.

In this work, we present our submission to Task 1 under the team name Leston-
Locator, inspired by the LesionLocator model for universal promptable lesion
segmentation [10]. Building on the nnU-Net framework [5] and the optimized
winning solution from autoPETIII [11], we extend the automatic segmentation
pipeline to incorporate simulated user interactions. Specifically, the model still
provides auto-segmentation masks if no clicks are provided but leverages the
user prompts to refine and improve the initial results.

2 Methods

Our approach builds directly on the winning solution from the previous autoPET
IIT challenge [11], which is based on the nnU-Net framework [5] extended with
several key advancements: (i) the more powerful ResEncL U-Net architecture
preset [7], (ii) a large-scale multi-modal pretraining and fine-tuning strategy that
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enabled robust cross-domain feature learning, (iii) organ supervision to mitigate
false positives in physiologically active regions, and (iv) tailored data augmenta-
tion including PET-CT misalignment simulation. Together, these components
substantially improved generalization across tracers, centers, and patient popu-
lations. The model uses the 3d_fullres configuration, resamples all images to a
common spacing of [3, 2.04, 2.04] and normalizes both modalities with the
default CT normalization scheme. We train with a batch size of 2 for 1000 epochs
and a uniform patch size of 192x192x192. We use an initial learning rate of 1e-3
for fine-tuning where we also experiment with MultiTalent [12] pretraining on
more datasets. Additional details can be found in Table 2.

For the autoPET /CT IV challenge (Task 1), we retain this strong foundation and
introduce modifications to address the novel human-in-the-loop setting. Specif-
ically, we adapt the model to leverage interactive click-based inputs by adding
two additional input channels encoding foreground (positive) and background
(negative) prompts, while keeping the underlying architecture, loss, and hyper-
parameters unchanged. The key challenges lie in (i) how to represent clicks as
model inputs and (ii) how to realistically simulate user interactions during train-
ing.

Click representation. A central design choice in promptable segmentation
models is how spatial prompts are encoded for the network. In our approach,
prompts are provided as additional input channels to the U-Net, but the critical
question is how to represent a point at a given spatial location. We experi-
mented with Gaussian kernels of varying standard deviations o, normalized to
unit volume, as well as Euclidean Distance Transforms (EDT) with different
scaling factors inspired by nnlnteractive [6]. The EDT-based representation con-
sistently outperformed Gaussian kernels, likely because the normalization of the
latter results in low-intensity voxel values that are not effectively captured by
the network.

Simulating user interaction. To improve variability and generalization, we
generate prompts online during training rather than relying solely on precom-
puted point locations. Prompts are simulated after data augmentation and di-
rectly within the sampled training patches, ensuring that their spatial represen-
tation remains consistent while exposing the network to diverse imaging condi-
tions. For positive and negative clicks respectively, we simulate between zero and
ten prompts per patch, sampled with a logarithmic probability that favors fewer
points, i.e. up to twenty total prompts are possible but rarely occur. For vali-
dation, we restrict ourselves to the official precomputed prompts to guarantee
comparability across models. Prompt locations are primarily simulated using the
official challenge code to match the distribution expected at test time, but we
extend this with an additional implementation to introduce further variability,
using an 80%,/20% sampling strategy between the two. The main difference is
that our simulated prompts are less restricted to centers or borders of lesions and
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Fig.1: Examplary visualization of 3D image patches provided to the network
during training with the respective positive (green) and negative (red) points as
well as the ground truth segmentation mask shown.

can instead appear anywhere inside the target region, with a higher probability
of being sampled near the lesion core.

2.1 Data

Training data In addition to the datasets provided by the autoPET/CT IV
challenge [4][8], we incorporated several external resources to enhance model
robustness and generalization. Specifically, we utilized the DEEP-PSMA dataset
[3], the TCGA-LUAD collection [1], and the NSCLC Radiogenomics dataset [2].

Validation data For validation, we exclusively relied on the official challenge
dataset and adhered to the provided splits. This ensured comparability across
models and allowed us to optimize performance for the test distribution.

3 Results

Table 1 reports the results of our five-fold cross-validation experiments, evaluat-
ing Dice, false positive volume (FPvol), and false negative volume (FNvol) met-
rics. The table compares the baseline autoPET III model with different spatial
prompt representations added, including Gaussian kernels with varying standard
deviations and Euclidean Distance Transform (EDT) representations of different
sizes. All metrics are computed according to the official evaluation protocol, with
AUC calculated using 0, 3, 7, and 10 clicks.

The results demonstrate that EDT-based representations consistently outper-
form Gaussian kernels across all metrics, particularly for Dice and FPvol. Among
the EDT variants, the model with Size 2 and custom points achieves strong per-
formance, reducing FPvol and FNvol compared to other configurations. Incor-
porating additional training data further improves Dice and FNvol, while the
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Table 1: Results from five-fold cross-validation. Metrics are calculated according
to the official evaluation implementation and split. Note that the AUC is com-
puted only using 0, 3, 7, and 10 clicks.

Dice?t FPvol| FNvol)
Setting AUC Last | AUC Last | AUC Last
autoPET III model - 68.33 - 8.93 - 10.15
+ Gaussian Kernel o0 = 3 2.06 68.70 | 26.74 8.92 | 18.31 6,14
+ Gaussian Kernel o = 2 2.10 70.78 | 26.31 8.76 | 18.60 6.15
+ Gaussian Kernel o0 = 1 212 71.89 | 26.34 8.75 | 17.83 5.68
+ Gaussian Kernel o = 0.75 2.14 7237 | 26.45 8.78 | 17.70 5.56
+ Gaussian Kernel o = 0.5 2.15 72.94 | 25.73 855 | 16.86 5.23
+ Gaussian Kernel o = 0.25 2.18 74.53 | 25.33 8.39 | 15.98 4.60
+ Gaussian Kernel o = 0.1 2.18 74.59 | 26.05 8.64 | 16.11 4.75
+ EDT Size 4 2.21 75.75 | 26.48 8.73 | 13.67 3.66
+ EDT Size 2 2.22  76.09 | 26.31 8.62 | 14.46 3.86
+ EDT Size 3 2.21 75.89 | 26.85 8.81 | 15.01 4.06
+ EDT Size 2, custom points 2.21 76.19 | 24.53 8.05| 15.11 4.19
+ EDT Size 2, more data 2.21 76.00 | 24.85 8.19 | 15.45 4.15
+ EDT Size 2, more data, custom points | 2.22 76.35 | 26.03 8.50 | 14.17 3.76

custom point sampling strategy provides better generalization to realistic click
distributions.

3.1 Test Set Submission

For the final challenge submission, we ensemble all 5 folds of two models: (i) the
EDT Size 2 model with custom points (including 20% of points sampled using
our custom strategy) and (ii) the same model trained with additional data. This
ensemble leverages the complementary strengths of both models, combining the
robust performance of the base EDT Size 2 model with the broader generalization
afforded by additional training data. No post-processing was applied. Overall,
these two approaches achieved the best performance on the cross-validation.

4 Conclusion

We extended the autoPET III nnU-Net model pipeline to the interactive setting
of autoPET/CT IV, showing that Euclidean Distance Transform (EDT)-based
click encodings outperform Gaussian kernels. Online simulation of user inter-
actions and a custom point sampling strategy improved robustness to realis-
tic clicks. Our final ensemble with and without additional data, achieved the
best cross-validation performance. These results demonstrate the effectiveness
of promptable models for human-in-the-loop PET/CT segmentation and sup-
port their use in efficient, user-guided workflows.
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Table 2: Algorithm details

Team name algorithm data data post- training data
name (as pre-processing processing augmentation
submitted on
grand-challenge)

LesionLocator ~ LesionLocator = normalization & - nnUNet
resampling augmentations,
misalignment
augmentations
test time ensembling standardized network loss
augmentation (e.g. framework? architecture

cross-validation, (e.g. nnUNet, (e.g. UNet (3D))
model ensemble, MONALI, ...)

)

- 5-folds of two ~ nnUNet (3D) UNet (3D) DSC + CE
best performing
models
training data data/model use of GPU
dimensionality pre-trained hardware for
and size models training
autoPET III, 3D: 192x192x192 yes, MultiTalent Nvidia A100
DEEP-PSMA, pretraining
TCGA-LUAD,
NSCLC-

Radiogenomics
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