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Abstract. Lesion Segmentation in PET/CT scans is an essential part
of modern oncological workflows. To address the challenges of time-
intensive manual annotation and high inter-observer variability, the au-
toPET challenge series seeks to advance automated segmentation meth-
ods in complex multi-tracer and multi-center settings. Building on this
foundation, autoPET IV introduces a human-in-the-loop scenario to effi-
ciently utilize interactive human guidance in segmentation tasks. In this
work, we incorporated tracer classification, organ supervision and sim-
ulated clicks guidance into the nnUNet Residual Encoder framework,
forming an integrated pipeline that demonstrates robust performance in
a fully automated (zero-guidance) context and efficiently leverages iter-
ative interactions to progressively enhance segmentation accuracy. Our
source code is available at https://github.com/huang-jw22/autoPET-4-
submission .
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1 Introduction

Positron Emission Tomography combined with Computed Tomography imag-
ing (PET/CT) supplies combined metabolic and anatomical information, acting
as a powerful imaging modality for clinical diagnosis and treatment planning
[2,11]. However, manual lesion segmentation in PET/CT scans remains a time-
consuming process susceptible to inter-observer variability, which motivates the
development of automated methods to improve both efficiency and reproducibil-
ity. Deep learning has emerged as a powerful paradigm for automated segmen-
tation of medical images, and its feasibility for handling diverse multi-tracer
and multi-center PET/CT data has been robustly demonstrated in preceding
autoPET challenges [3].

The autoPET IV challenge extends this pursuit by investigating the role of
interactive human guidance in the segmentation process. The challenge utilizes
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a large-scale dataset inherited from previous iterations, comprising 1014 FDG-
tracer and 597 PSMA-tracer scans [4,7]. The focus this year is a human-in-the-
loop segmentation scenario, where incremental human guidance is provided in
the form of foreground and background clicks to simulate a clinical workflow
where an automated tool is progressively refined by an expert user.

Our method builds upon the well-established nnU-Net framework [5,6], which
has consistently demonstrated high accuracy and strong generalization ability
across numerous medical segmentation tasks, including prior autoPET competi-
tions [3,9,10]. We took valuable experiences from previous top-performing teams,
forming an integrated pipeline for this task. Various training strategies were in-
vestigated to teach the model progressively improve with incremental guidance
while maintaining robustness in zero/few-guidance settings.

2 Methods

2.1 Data

Training data. The autoPET IV dataset was used for both training and vali-
dation, including 1,014 FDG cases and 597 PSMA cases [2,11]. Specifically, the
FDG dataset comprises 501 patients diagnosed with histologically proven ma-
lignant melanoma, lymphoma, or lung cancer, along with 513 negative control
patients. The PSMA dataset includes pre- and/or post-therapeutic PET/CT
images of male individuals with prostate carcinoma, encompassing images with
(537) and without PSMA-avid tumor lesions (60).

In autoPET IV, the role of human interaction is emphasized. For each case,
10 Foreground clicks and 10 Background clicks are simulated and modeled as 3D
Gaussian maps using the provided script, then concatenated with the original
PET/CT data to form a 4-channel input.

Validation data. 5-fold cross-validation was performed for model development
and evaluation. An 80/20 train-val split was applied on the autoPET dataset to
create the training data and validation data for 5 folds.

2.2 Data pre-processing

Experiment planning and data pre-processing were conducted using the default
planner and preprocessor of nnUNetv2 [5]. CT images were normalized with the
"CT Normalization" scheme that conducts percentile clipping before normal-
ization, while ZScore Normalization was applied to PET images and two clicks
channel. Default data augmentation of nnUNetv2 includes Gaussian noise, ran-
dom rotation, cropping, Gaussian blur, down-sampling, and gamma correction.

2.3 Algorithm/model

Our segmentation pipeline is built upon the robust nnUNet Residual Encoder
framework [6]. To tailor this powerful baseline for the specific challenges, we
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integrated several key components, including an upstream tracer classification
module, a dual-headed segmentation architecture with organ supervision, and a
post-processing method based on PET SUV thresholding.

Tracer Classification. FDG and PSMA tracers exhibit fundamentally differ-
ent biodistribution patterns, which presents a significant challenge for a uni-
fied segmentation model. Training models on separate tracer datasets showed
prospects in enhancing model’s performance on corresponding tracer images.
To achieve efficient and accurate tracer classification, We adopted the public
weights from the autoPET 2024 runner-up team [8]. Their model incorporates
two separate ResNet trained on coronal and sagittal Maximum Intensity Projec-
tions, followed by a multilayer perceptron (MLP) that receives the concatenated
features from the frozen backbones of both models, and outputs a binary predic-
tion of the tracer type. We verified that this pre-trained model achieved 100%
classification accuracy across all training cases.

Incorporating Human Guidance into Training Data. In autoPET IV
challenge, each methods are evaluated in two aspects: The ability to efficiently
utilize incremental human guidance information, and the ability to perform op-
timally in densely-guided scenarios. The way of incorporating guidance informa-
tion into the training data largely affects the model’s robustness and generaliza-
tion ability across different amounts of guiding clicks. We mainly explored two
ways of incorporating interactive information into the training process:

– Full-Guidance Training. This initial strategy aims to train a model that
quickly adapts to human guidance and achieve maximum segmentation ac-
curacy when provided with dense user interactions. In this approach, we
concatenate all 10 foreground/background clicks (modelled as 3D Gaussian
heatmaps) together with the PET/CT images to form a 4-channel input for
each case (Channnel 0: CT; Channel 1: PET; Channel 2: FG Clicks; Channel
3: BG Clicks).

– Stochastic Click Sampling. A model trained exclusively on dense guid-
ance often fails to establish a strong zero-guidance baseline and struggles
with sparse inputs, which is detrimental to the AUC-based evaluation met-
rics. To address this, we implemented a stochastic click sampling strategy.
For each training sample loaded, we randomly sampled an integer k (from 0
to 10) according to a predefined probability distribution. The network was
then provided with guidance maps generated from only the first k foreground
and k background clicks. This approach exposes the model to the full spec-
trum of interactive scenarios, forcing it to learn a robust and flexible response
to varying levels of user input.

PSMA-specific Model Development. Our lesion segmentation models are
primarily built upon the nnUNetv2 framework, utilizing the most recent Resid-
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ual Encoder UNet architecture (ResEnc-M/L) [6]. [8] reported significant im-
provement in PSMA segmentation accuracy with models trained separately on
the PSMA dataset. We tested various training strategies and selected 3 most
promising models for final 5-fold cross validation.

– Model V0: Weighted loss function with Dense Guidance. The speci-
ficity and high sensitivity of PSMA in prostate carcinoma cases contributes
to the appearance of numerous small and sparsely-distributed metastatic le-
sions [1], which are challenging for standard segmentation model. To guide
the model place more emphasis on these small foreground lesions, we ad-
justed the weight of DiceCE loss from equal weights to Dice:CE = 2:1. Be-
sides, the smoothing term is omitted in the Dice loss calculation to make
training more stable, as suggested by [10]. The model adopted the ResEnc-
M architecture and was trained on the full-guidance dataset (10 clicks) for
1000 epochs with a patch size of [192, 192, 192] and a batch size of 3.

– Model V1: Second-Stage Fine-Tuning for Interactive Performance.
The dense-guidance training would potentially result in a specialist model
that is highly dependent on user input and underperform in zero- or few-
click scenarios. To enhance robustness with sparse guidance, a second stage
fine-tuning of model V0 was conducted on the same training data but using
stochastic click sampling. The distribution was heavily skewed towards sce-
narios with minimal guidance (e.g., 40% probability for 0 clicks, 20% for 1
click) to specifically improve the model’s baseline and sparse-guidance per-
formance. This stage was run for 250 epochs with a reduced initial learning
rate of 2e-4 to ensure stable adaptation without catastrophic forgetting.

– Model V2: Fine-tuning pre-trained model with Balanced Stochas-
tic Sampling. A strong anatomical background has been proved helpful
for enhancing lesion segmentation accuracy and mitigating false positive
segmentation on organs with high physiological uptake [10,8]. To provide
anatomical prior knowledge, we utilized the publicly available weights from
[10], which had been trained on a diverse, multi-modal medical imaging
dataset. The single-channel pre-trained weights were expanded to our 4-
channel input by duplicating them for the CT and PET channels and ini-
tializing the two click-guidance channels to zero. We then fine-tuned this
model on the PSMA dataset for 1000 epochs using stochastic click sampling.
The click sampling distribution for this model was designed to be more bal-
anced, with significant weight on both zero-click (10%) and dense-click (30%)
scenarios. This strategy was chosen to leverage the strong baseline prior from
the pre-trained weights while progressively training the model to respond to
dense interactive guidance.

Unified Multi-Tracer Model with Organ Supervision. For FDG dataset,
however, the improvement of separate training is not significant. This conclusion
is drawn both from [8] and our empirical experiments. Besides, given that all
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FDG training data were acquired from UKT while all PSMA training data were
from LMU, we hypothesized that training a unified model on the combined
dataset would force it to learn more robust, center-invariant features, thereby
improving its generalization potential.

To better cope with multi-tracer and multi-center data, Organ Supervision
was implemented to guide the model form a strong anatomical understanding
which is invariant of tracer types and center differences. We utilized the "au-
toPET3" Trainer class proposed by [10], which introduced an auxiliary organ
segmentation head focusing on a set of 10 key organs (including spleen, kid-
neys, liver, urinary bladder, lung, brain, heart, stomach, prostate, and glands
in the head region). Pseudo organ labels were created using TotalSegmentator
[12]. Equal loss weighting was applied on both segmentation head. For final uni-
fied training, we adopted the same methods (Organ Supervision + Pre-trained
model), and investigated the performance with different amount of guidance
incorporated in the training data:

– Model V3: Full-Guidance Training. The integration of anatomical prior
and organ supervision improved our confidence in the model’s ability to han-
dle few-clicks situations, so we first evaluated the model’s performance when
trained with maximal human guidance (all 10 clicks). To ensure consistency
with pre-trained weights, ResEnc-L architecture was adopted with patch size
[192, 192, 192] and batch size 2. Training was conducted for 1000 epochs with
initial learning rate 1e-3.

– Model V4: Stochastic Click Sampling. The second experiment aimed
to create a more balanced model optimized for progressive human interac-
tion. It followed the identical architecture and hyperparameters, but was
trained using our stochastic click sampling strategy. The weights distribu-
tion for generating different numbers of clicks was [0.10, 0.10, 0.10, 0.08,
0.04, 0.04, 0.04, 0.04, 0.08, 0.08, 0.30] (corresponding to 0-10 clicks), em-
phasizing dense-guidance scenarios while maintaining the prior ability of the
pre-trained model under 0/few-click circumstances.

2.4 Data post-processing

For data post-processing, we adopted the thresholding methods from [8] to re-
duce false positive volumes, by applying a tracer-specific SUV threshold to re-
move segmentation masks with PET values below the threshold. The thresholds
were set to 1.5 for FDG cases and 1 for PSMA cases.

2.5 Training and test parameters

All models were trained using the nnUNetv2 framework. 3 PSMA models were
trained on NVIDIA A100 GPUs, while the 2 unified models were trained on
NVIDIA A800 GPUs. Specific training parameters such as patch size, batch
size, epoch counts and initial learning rate for each experiment are detailed in
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their respective sections above. Any parameters not explicitly mentioned were
kept to the nnUNetv2 default settings.

For inference, we enable test-time augmentation (TTA) to enhance prediction
robustness. To comply with the challenge’s time constraints, we estimate the time
required for predicting the original image, and compute the number of mirrored
axes allowed within a 40 seconds limit for each fold. The final segmentation
is produced by averaging the softmax probabilities from multiple augmented
predictions.

2.6 Github repository

Our source code and trained weights are available at https://github.com/huang-
jw22/autoPET-4-submission/tree/master .

3 Results

3.1 PSMA lesion segmentation model

5-folds training has been performed for all 3 methods described in Section 2.3.
Average cross validation results are presented in Tab 1. It is important to note
that these metrics are not directly comparable, as each model was trained on a
dataset with a different click-guidance distribution. Models trained with stochas-
tic sampling (V1, V2) were evaluated on validation sets that also contained varied
click counts, which naturally results in lower average performance compared to
the dense-guidance model (V0) evaluated on a dense-guidance validation set.

Table 1. Averaged 5-fold cross-validation results for the PSMA-specific models.

Version Training Data DICE FPV FNV

Model V0 Full Guidance 0.75 5.86 10.87
Model V1 Stochastic Sampling 0.66 11.30 13.12
Model V2 Stochastic Sampling 0.72 8.11 12.76

To have a fair comparison of the 3 models and evaluate interactive abilities,
we randomly chose 100 PSMA cases and generated 11 different inputs (with 0-10
clicks) for each of them. Interactive evaluation was then conducted by giving 11
predictions for all cases using the 3 models.

Results of the evaluation is presented in Tab 2. It must be noted that the
predictions were made by the 5-folds ensemble and all cases had already been
seen by the models during training, so no guarantee of final test performance
can be made. However, some valuable conclusions can still be yielded:

https://github.com/huang-jw22/autoPET-4-submission/tree/master
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– Model V0 showed terrible performance on 0/few-clicks circumstances. This
confirms that training exclusively on dense guidance makes the model too
dependent on user interaction and fails in sparsely-guided context.

– Despite high Dice score, Model V1 showed significantly higher False Positive
Volume across all click counts. This observation suggests that a sudden ab-
sence of interactive information might cause the model to develop an overly
aggressive prediction strategy to compromise the lack of external guidance.

– Model V2 demonstrated most stable performance and a significant correla-
tion between number of clicks and segmentation quality. An increasing Dice
Score and decreasing FPV/FNV values indicates that the model efficiently
utilized human guidance. The baseline performance with no guidance pro-
vided is also acceptable.

Table 2. Average evaluation results of PSMA models across 0-10 clicks interaction.

DICE FPV FNV

Clicks V0 V1 V2 V0 V1 V2 V0 V1 V2

0 0.000 0.708 0.619 0.000 13.927 0.991 190.238 4.033 5.641
1 0.599 0.808 0.775 0.637 13.814 0.378 27.328 4.057 4.000
2 0.723 0.832 0.816 0.687 13.382 0.377 11.061 3.533 2.801
3 0.781 0.845 0.837 0.703 13.347 0.367 5.503 3.263 2.290
4 0.810 0.847 0.849 0.707 13.261 0.365 4.935 3.139 2.190
5 0.823 0.851 0.855 0.668 13.146 0.365 3.752 2.876 2.119
6 0.839 0.855 0.860 0.703 13.159 0.364 3.205 2.729 1.987
7 0.848 0.857 0.865 0.677 13.138 0.361 2.724 2.571 1.956
8 0.854 0.859 0.866 0.667 12.948 0.352 2.399 2.390 1.831
9 0.860 0.861 0.869 0.640 12.886 0.330 2.038 2.361 1.782
10 0.864 0.862 0.871 0.635 12.868 0.332 1.823 2.202 1.613

3.2 Unified lesion segmentation model

Due to computational constraints, the 5-fold cross-validation for these models
was partially completed at the time of this analysis, with results available from
three folds for Model V3 (full guidance) and two folds for Model V4 (stochas-
tic sampling). Similar interactive evaluation was conducted on 250 FDG cases.
Results of the evaluation is presented in Tab 3.

Both methods exhibited a stable 0-click performance and progressive per-
formance gains with incremental user guidance. The results confirmed our as-
sumptions that anatomical prior and organ supervision guarantees the model’s
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generalization ability across different interactive levels, even if all training data
was provided with full guidance (model V3).

A closer analysis reveals a performance trade-off between the two models:
Model V3 presents better performance under dense guidance scenarios, while
Model V4 outperforms with sparse clicks inputs. To better leverage their in-
dividual specialty, we decided to adopt a hybrid strategy during inference, by
flexibly selecting model version based on the number of input guiding clicks.
Model V4 would be utilized in early interactive phase (0-4 clicks), while model
V4 would be chosen in densely guided steps (5-10 clicks). This approach en-
sures that the optimal model is deployed to achieve better precision in different
interactive scenarios.

Table 3. Average evaluation results of unified models across 0-10 clicks interaction.

DICE FPV FNV

Clicks V3 V4 V3 V4 V3 V4

0 0.739 0.788 0.694 0.651 8.869 5.958
1 0.811 0.837 0.647 0.500 7.040 5.631
2 0.844 0.853 0.660 0.469 5.728 4.420
3 0.861 0.862 0.700 0.459 4.459 3.874
4 0.869 0.865 0.678 0.424 3.805 3.310
5 0.875 0.870 0.684 0.422 2.798 2.537
6 0.880 0.873 0.688 0.418 2.630 2.249
7 0.883 0.873 0.703 0.435 2.411 2.090
8 0.886 0.875 0.714 0.446 2.065 1.934
9 0.888 0.876 0.721 0.450 1.805 1.848
10 0.889 0.877 0.725 0.434 1.589 1.658

4 Final Submission

For final submission, we followed the described pipeline, integrating a tracer
classifier, separate models for different tracer types, with SUV thresholding as
final post-processing. For PSMA cases, we submitted Model V2 (fine-tuning pre-
trained model with balaned stochastic sampling), which exhibited best interac-
tive performance during evaluation; for FDG cases, we adopted the aforemen-
tioned hybrid strategy, flexibly utilizing two different models based on different
scenarios. Training parameters and algorithm details have been described above
and also summarized in Tab. 4.
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5 Conclusion

In this work, we developed and validated a comprehensive pipeline for interac-
tive lesion segmentation in multi-tracer and multi-center PET/CT data. The
proposed pipeline integrates several key methodologies, including tracer classi-
fication, unified & tracer-specific model training, organ supervision and PET
SUV thresholding. We also explored various ways of incorporating human guid-
ance into training data. Our experiments yielded two critical insights. First,
we showed that a carefully designed stochastic sampling curriculum can effec-
tively enhance the model’s generalization ability across different guidance level.
Second, we demonstrated the role of introducing anatomical prior and organ
supervision in securing a strong non-guiding baseline precision while reaching a
high-performance ceiling with dense interactions. Our pipeline exhibits robust
performance with sparse human guidance and a proficient ability to leverage
incremental human feedback to refine segmentation accuracy.

Table 4. Algorithm details

Team name algorithm
name

data
pre-processing

data post-
processing

training data
augmentation

BIRTH BIRTH
submission

nnUNet
Preprocessor

PET SUV
Thresholding

nnUNet DA
scheme
(Gaussian noise,
random rotation,
cropping,
Gaussian blur,
down-sampling,
and gamma
correction)

test time
augmentation

ensembling standardized
framework

network
architecture

loss

Mirroring multi-folds
cross-validation

nnUNetv2 (3D) ResEnc UNet
(3D)

DSC + CE

training data data/model
dimensionality
and size

use of
pre-trained
models

GPU
hardware for
training

1014 FDG + 597
PSMA PET-CT
of autoPET

3D: 192x192x192 Public available
pre-trained
models

5x Nvidia A100
1x Nvidia A800
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